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Abstract here consider general settings where each example in the

Real-world data for classification is often la-
beled by multiple annotators. For analyzing such
data, we introduce CROWDLAB, a straightfor-
ward approach to estimate: (1) A consensus la-
bel for each example that aggregates the individ-
ual annotations (more accurately than aggrega-
tion via majority-vote or other algorithms used in
crowdsourcing); (2) A confidence score for how
likely each consensus label is correct (via well-
calibrated estimates that account for the number
of annotations for each example and their agree-
ment, prediction-confidence from a trained classi-
fier, and trustworthiness of each annotator vs. the
classifier); (3) A rating for each annotator quanti-
fying the overall correctness of their labels. While
many algorithms have been proposed to estimate
related quantities in crowdsourcing, these often
rely on sophisticated generative models with iter-
ative inference schemes, whereas CROWDLAB
is based on simple weighted ensembling. Many
algorithms also rely solely on annotator statistics,
ignoring the features of the examples from which
the annotations derive. CROWDLAB in contrast
utilizes any classifier model trained on these fea-
tures, which can generalize between examples
with similar features. In evaluations on real-world
multi-annotator image data, our proposed method
provides superior estimates for (1)-(3) than many
alternative algorithms.

1 Introduction

Training data for multiclass classification are often labeled
by multiple annotators, with some redundancy between an-
notators to ensure high-quality labels. Such settings have
been studied in crowdsourcing research [Monarch, 2021b,
Paun et al., 2018], where it is often assumed that many anno-
tators have labeled each example [Carpenter, 2008, Khetan
et al., 2018]. This is often prohibitively expensive, so we

dataset is merely labeled by at least one annotator, and each
annotator labels many examples (but still only a subset of
the dataset). Each annotation corresponds to the selection
of one class y € {1, ..., K} which the annotator believes to
be most appropriate for this example.

While certain ML classification models can be trained in
a special manner to account for the multiple labels per ex-
ample [Nguyen et al., 2014, Peterson et al., 2019], a more
straightforward approach commonly utilized is to aggre-
gate the labels for each example into a single consensus
label, e.g. via majority-vote or crowdsourcing algorithms
like Dawid-Skene [Dawid and Skene, 1979]. Any classifier
can then be trained on these consensus labels via off-the-
shelf code. Here we propose a method! that leverages any
already-trained classifier to: (1) establish accurate consen-
sus labels, (2) estimate their quality, and (3) estimate the
quality of each annotator [Monarch, 2021c]. The latter two
aims help us determine which data is least trustworthy (and
should perhaps be additionally verified in subsequent rounds
of annotation [Bernhardt et al., 2022]). CROWDLAB (Clas-
sifier Refinement Of croWDsourced LABels) is based on
a straightforward weighted ensemble of the classifier pre-
dictions and individual annotations, with weights assigned
according to the (estimated) trusthworthiness of each com-
ponent. CROWDLAB is easy to implement/understand,
computationally efficient (non-iterative), and extremely flex-
ible. It works with any classifier and training procedure, as
well as any classification dataset (including those containing
examples only labeled by one annotator).

Motivations. Figure 1 illustrates how many real-world
multi-annotator datasets look, showing a large disparity in
annotator quality as well as many examples whose consen-
sus label will be incorrect if we rely on majority vote (which
is often done in practice). Unsurprisingly, consensus labels
are more likely to be incorrect for those examples with fewer
annotations. Thus an effective method to estimate consen-
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Figure 1: Statistics of our Hardest dataset, where accuracy is always measured against underlying ground-truth labels. (a)
Distribution over annotators showing the overall accuracy of each annotator’s chosen labels. (b) Distribution over examples
showing the number of annotations per example, grouped by whether the majority-vote consensus label is correct or not.

sus label quality should properly account for the number of
annotations an example has received as well as the quality
of the annotators who selected these labels. Many of the
examples whose consensus label is wrong merely have a
single annotation, which provides little information, and
thus leveraging a trained classifier can help us better gen-
eralize to such examples to estimate their labels’ quality
(especially if the data contain other examples with similar
feature values). But when utilizing a classifier, we also wish
to account for the accuracy and confidence of its estimates.
CROWDLARB is a straightforward approach to appropriately
account for all of these factors.

Notation. Consider a dataset sampled from (feature, class
label) pairs (X, Y) that is comprised of: n examples, m an-
notators, and K classes. Here is notation we use throughout:

* [n] ={1,2,...,n} indexes examples in the dataset and
X; denotes the features of the ¢th example.

Each example i belongs to one class, i.e. V; € [K] :=
{1,..., K}. This true class is unknown to us.

Aj is the jth annotator for j € [m] := {1,2,...,m}.

* Y;; € [K] denotes the class annotator j chose for
example ¢, with Y;; = J if A; did not label this par-
ticular example. Each example receives at most most
m annotations, with most examples receiving far fewer
annotations under a reasonable data labeling budget.

. f/l denotes the consensus label for example <,
representing our best estimate of its true class Y;.

* 7, denotes the subset of examples labeled by annotator
J, I == {i € [n] : V;; # &}. We assume each
annotator has labeled multiple examples, i.e. |Z;| > 1.

e 7; denotes the subset of annotators that labeled
example ¢, J; := {j € [m] : V;; # J}. To save
labeling costs, some examples may only be labeled
by a single annotator.

e I, :={i € [n] : |Ji| > 1} denotes the subset of
examples labeled by more than one annotator.

* ¢; € [0,1] denotes a consensus quality score for

consensus label Y;, with values near O indicating
consensus labels we are less confident are correct.

* a; € [0,1] denotes an overall annotator quality
score for annotator j, with values near O indicating
annotators we are less confident will choose a correct
label for any given example.

* pm(Yi | X;) € RE denotes the predicted probability
vector given by a (trained classifier) model that a par-
ticular example with features X; belongs to each class
k. Y; m € [ K] denotes the model predicted label for
example 7, i.e. Y; p = argmax;, pm(Y; = k | X;).

* L(Y,p) € [0,1] denotes a label quality score [Kuan
and Mueller, 2022] which estimates our confidence
that a particular label Y € [K] is correct for example
X, given vector p € RX estimating the likelihood that
X belongs to each class. In this paper, we use self-
confidence as the label quality score, L(Y, p) = p(Y),
representing the estimated probability that the example
belongs to its labeled class. Kuan and Mueller
[2022], Northcutt et al. [2021b] found this to be an
empirically effective score for flagging label errors
(in singly-labeled data) based on classifier predictions:

p(Y) ~ pm (Y| X).

We also employ the following standard mathematical nota-
tion: | 7| denotes the cardinality of set 7, 1(-) denotes the
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indicator function which evaluates to 1 if its condition is
True and O otherwise.

2 Methods

We assume some classifier model M has been trained to
predict the given labels based on feature values. CROWD-
LAB can be used with any type of classifier M (and training
procedure) as long as it is capable of outputting probabilistic
predictions pa (Y | X). To avoid overfit predictions, we fit
M via cross-validation, which enables us to produce held-
out predictions P (Y; | X;) for each example in the dataset
(from a copy of M which never saw X; during training).
In our subsequent experiments, we train M on consensus
labels derived via majority vote, but one could train the clas-
sifier on any other set of improved consensus labels or even
on the individual labels from each annotator (simply dupli-
cating multiply-annotated examples in the training set). The
performance of all methods considered here that leverage
M will accordingly benefit from improvements in the clas-
sifier’s predictive accuracy, but CROWDLAB is the only
method that aims to explicitly account for shortcomings
of the classifier’s predictions (which are inevitable due to
estimation error).

2.1 Consensus Quality Scoring Methods

We start by outlining various methods to estimate our
confidence that a given consensus label for each example is
correct. These quality estimates g; € [0, 1] may be applied
to any given label no matter which method was used to
establish consensus. Once we can estimate the quality
of any one label for each example, our consensus label
established under each method is simply chosen as the
class associated with the highest consensus quality score
(estimated by this method). This class can be identified
efficiently for CROWDLAB.

Agreement [Monarch, 2021b]. The fraction of annotators
who agree with consensus label (does not use classifier).

> (1)

J€Ti

q; =
IZI

Label Quality Score [Kuan and Mueller, 2022]. Likeli-
hood of each consensus label estimated by the trained clas-
sifier model: ¢; = L(Yl,pM (Y; | X;)). Used to evaluate
labels in standard (single-label) classification, this baseline
score ignores information from individual annotators.

CROWDLAB (Classifier Refinement Of croWDsourced
LABels). CROWDLAB also employs the same label
quality score for each consensus label, but applies it to
a different class probability vector which modifies the
prediction output by our classifier to account for the
individual annotations given for a particular example:
¢ = L(Yi, per (Yi | Xiy {Yis}))-

We estimate these class probabilities by means of a weighted
ensemble aggregation [Fakoor et al., 2021]:
per(Yi | Xi, {Yi5}) =
wp - Dm(Yi | Xo) + ez wi - ba; (Y [ {Yi5})
Wz + Zjeji w;

where paq € RE is the probability of each class predicted
by our classifier, p. A; € R¥ is a similar likelihood vector for
each annotator’s prediction, and w;, waq € R are weights
to account for the relative trustworthiness of each annotator
and our classifier (details further below).

To present the remaining details, we first define a likelihood
parameter P set as the average annotator agreement, across
examples that have more than one annotation. P estimates
the probability that an arbitrary annotator’s label will match
the majority-vote consensus label for an arbitrary example.

|I+| Z |\7z Z

€l 7T

where Z, := {i € [n] : |Ti| > 1} 2)

We then simply define our annotator predicted probability
vector used in (2.1) to be:

when Y;; =k

3)
when Y;; # £

P, (Vi = k| {¥i}) = {Zf_P

K—1

This simple likelihood is shared across annotators and only

involves a single parameter P that is easily estimated from

the data. Now let s; represent annotator j’s agreement with
other annotators who labeled the same examples.

Dz, 2uteg, o 1(Yij = Yie)
Sz (= 1)

Let A be the (empirical) accuracy of our classifier with
respect to the majority-vote consensus labels over the exam-
ples with more than one annotation (for which consensus is
more trustworthy).

“)

Sj:

Am =

Y AYim =) 5)

\I+| T

Here Y; a € [K] is the class predicted by our model for X;.
To normalize against a baseline, we calculate the accuracy
A c of always predicting the most common overall class
YmLc, which is the class labeled the most by the annotators.
This accuracy is also calculated on the subset of examples
that have more than one annotator, Z defined in (2).

Z (Ymic = ) (6)

€Ly

Amic = |I |
+

Based on this majority-class-accuracy baseline, we compute
normalized versions of: each annotator’s agreement with
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other annotators and the adjusted accuracy of the model.

].—Sj

w;=1— )

1—-Amc

1 1
wm = <1 - 1AMLC> Z ‘u7z (8)

CROWDLAB uses w; and w4 to weight our annotators
and model in its weighted ensemble.

Dawid-Skene [Dawid and Skene, 1979]. This Bayesian
method specifies a generative model of the dataset annota-
tions and employs iterative expectation-maximization (EM)
to estimate each annotator’s error rates in a class-specific
manner. A key item subsequently estimated in this approach
is pps(Y; | {Yi;}), the posterior probability vector of
the true class Y, for the ith example, given the dataset
annotations {Y;;}.

Define Wl(cjz as the probability that annotator j labels an
example as class £ when the true label of that example is &,
i.e. the individual class confusion matrix for each annotator,
which is the likelihood function of the Dawid-Skene gen-
erative model. The Dawid-Skene posterior distribution for
a particular example is computed by taking product of each
annotator’s likelihood and some prior distribution pyior-

pos(Yi [ {Yij}) o Tprior - n Wl(ejvg/w ®)
Jj€Ti

Our work follows conventional practice taking the prior
to be the unconditional empirical distribution of given
labels across the dataset. A natural consensus quality
score is the label quality score for each consensus label
under the Dawid-Skene posterior class probabilities:

= L(Y;, Pos(Y; | {Yi}))-

GLAD (Generative model of Labels, Abilities and Dif-
ficulties) [Whitehill et al., 2009].  Specifying a more
complex generative model of the dataset annotations than
Dawid-Skene, this Bayesian approach also employs iterative
expectation-maximization (EM) to additionally estimate es-
timate «, the expertise of each annotator and /3, the difficulty
of each example. GLAD’s likelihood is based on the follow-
ing probability that an annotator chooses the same class as
the consensus label:

1

p(Yij = Yilaj, Bi) = T e—ab 10)
Like Dawid-Skene, GLAD uses the data likelihood to esti-
mate the posterior probability of the true class Y; for the ith
example: pg(Y; | {Yi;}). Here we use the same standard
prior as for Dawid-Skene. Again a consensus quality score
can naturally be obtained via the label quality score com-

puted with respect to the GLAD posterior class probabilities:
¢ = L(Yi,pa(Y; | {Yi5})).

While many Bayesian annotation models have been
proposed [Kara et al., 2015, Hovy et al., 2013, Carpenter,
2008], Dawid-Skene and GLAD are often used in practice
[Toloka, Monarch, 2021c] and perform well in empirical
benchmarks [Sheshadri and Lease, 2013, Paun et al., 2018,
Sinha et al., 2018].

Dawid-Skene with Model [Monarch, 2021a]. Although
very popular, the Dawid-Skene and GLAD methods do not
utilize a classifier at all, and thus they struggle with sparsely
labeled examples for which the only way to produce mean-
ingful estimates is by generalizing over feature values X. A
straightforward adaptation of these methods to leverage a
classifier is to produce class predictions for each example
(predict hard labels rather than probability vectors), and treat
these predicted labels as if they were the outputs from an
additional annotator [Monarch, 2021a]. Because methods
like Dawid-Skene and GLAD automatically adjust for esti-
mated annotator quality, they should theoretically account
for the classifier’s strengths/weaknesses.

For example, we adapt the Dawid-Skene approach in this
fashion by: adding the model’s predicted labels as an
additional annotator (who has annotated every example),
then computing the consensus quality score using the same
Dawid-Skene method described above. The resulting pos-
terior is now a function of the example’s feature values as
well (since classifier predictions depend on X;).

GLAD with Model [Monarch, 2021a]. We follow the same
approach to adapt GLAD to leverage the classifier: First add
the model’s predicted label for each example as labels from
one additional annotator, and then compute the consensus
quality score using the GLAD method described above.

Empirical Bayes. While the previous two methods do
not account for the classifier’s confidence in its individual
predictions, we consider an alternative adaptation of Dawid-
Skene that does. This method treats the model’s prediction
as a per-example prior distribution and the annotators’ la-
bels as observations to compute pgg(Y; | X;,{Y;;}), the
posterior probability of the true class Y; for the ith example,
given the dataset annotations {Y;;} and an example-specific
prior based on the feature values X;. The likelihood func-
tion for each annotator is defined by the class confusion
matrix estimated via the Dawid-Skene algorithm. Using
the classifier-derived prior distribution and likelihoods, we
can compute an Empirical Bayes posterior in the same way
outlined for Dawid-Skene:

1_[ Y (1)

DeB(Y: | Xi, {Yi;}) o pm(Yi | Xi)
JE€Ti

and compute a consensus quality score in the same manner:
qi = L(YéaﬁEB(Yi \ X, {ng}))

Some have considered iterative variants of this hybrid gen-
erative/discriminative approach, in which the classifier is
retrained to fit the resulting posterior and the above pro-
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cess is repeated with the new classifier [Raykar et al., 2010,
Khetan et al., 2018, Rodrigues and Pereira, 2018, Platanios
et al., 2020]. This however requires iterative training of a
classifier over many rounds, as well as training the classifier
with soft labels rather than a standard classification setting.

Active Label Cleaning [Bernhardt et al., 2022]. Also utiliz-
ing a trained classifier, Bernhardt et al. [2022] recently pro-
posed to score multi-annotator consensus quality by subtract-
ing the cross-entropy between classifier predicted probabili-
ties and individual annotations by the entropy of the former.

2 el
: (_ S

=k | {Yw }]E..’fq) IOgﬁ/\/[,i,k

ik 10gﬁM,i,k> (12)

Here we abbreviate pa 1 = pm(Y; = k| X;), and
Demp(Ys = k | {Yij}jez,) is the overall empirical distribu-
tion of class labels amongst the annotations for a particular
example. Like CROWDLAB, this approach accounts for
classifier confidence and all individual annotations, but it
lacks CROWDLAB’s ability to adjust for how trustworthy
the individual annotators and classifier are.

2.2 Annotator Quality Scoring Methods

Beyond estimating consensus labels and their quality, we

also consider ways to rank which annotators provide the

best/worst labels. Here are methods to get a quality score
€ [0, 1] for each annotator.

Agreement [Monarch, 2021b]. This basic approach scores
annotators via the empirical accuracy of each annotator’s
labels with respect to the majority-vote consensus label.
Examples with only one annotation not considered in this
accuracy calculation to prevent overconfident estimates.

1

My, =Y
| ‘7’+| 7;€ij+
whereZ; , :=Z, "1, ={ieT;:

aj =
\7il > 1} 13)

Label Quality Score [Kuan and Mueller, 2022]. While the
agreement-based scores rate annotators solely based on the
observed annotator statistics, we can alternatively rely on
our classfier predictions p a4 to rate the average quality of
all labels provided by any one annotator.

Z Yig, m(Yi | X5)) (14)
’LEI

CROWDLAB. Our method takes into account both the
label quality score of each annotated label (computed based
on our classifier) as well as the agreement between each
annotator’s label with: other annotators’ labels and the con-
sensus label. First, we estimate the average label quality

score of labels given by each annotator, as in (14), but here
using the estimated class probabilities pcr output by the
CROWDLAB method described in Sec. 2.1:

Qj I Z L lj7pCR(Y | Xm {}/ZJ})) (15)
| | i€ZL;
Next, we compute each annotator’s agreement with consen-
sus among examples with over one annotation.

LS, = (16)

A =
| ‘7’+| iGIj,+

J

Here Z; , is defined in (13) and the consensus labels }Aﬁ are
established via the CROWDLAB method from Sec. 2.1. We
then use the existing model and annotator weights wa, w;
(computed as part of the CROWDLAB consensus quality
score in (7) and (8)) to find a single aggregate weight to
compare all annotators against the classifier model.

_ WM
o= —2
wM+w0
n
where wo——ZZwJ | T (17)
1=179=1

Note that w is shared across all annotators. A quality score
for each annotator is finally computed via a weighted aver-
age of the label quality score and the annotator agreement
with the consensus labels:

a; = ’LT/QJ‘ + (]. - IZ))AJ (18)
Dawid-Skene [Dawid and Skene, 1979]. We follow the
conventional use of Dawid-Skene to rate a particular anno-
tator via the probability that they agree with the true label.
This is directly estimated for each possible true label as
part of the per-annotator class confusion matrix used by the

Dawid-Skene method (see Sec. 2.1), such that one can score
each annotator using the trace of their confusion matrix.

K

GLAD [Whitehill et al., 2009]. Expertise of each annotator
as estimated by GLAD method (see Sec. 2.1): a; = «;.

Dawid-Skene with Model [Monarch, 2021a]. Add the
classfier’s predicted labels as an additional annotator (who
labeled every example), and score each real annotator’s
quality using the Dawid-Skene method above.

GLAD with Model [Monarch, 2021a]. Add the classifier’s
predicted labels as an additional annotator (who labeled
every example), and then score each real annotator’s quality
using the GLAD method above.
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2.3 Why CROWDLAB can produce better estimates
than other methods

* In settings with few (or only one) labels for an example,
the agreement/Dawid-Skene/GLAD scores become
unreliable [Paun et al., 2018], but CROWDLAB can
utilize additional information provided by a classifier
that may be able to generalize to this example (if
other dataset examples with similar feature values
have more trustworthy consensus labels, e.g. if they
received more annotations).

For examples that received a large number of annota-
tions, CROWDLAB assigns less relative weight to the
classifier predictions and its consensus quality score
converges toward the observed annotator agreement.
This quantity becomes more reliable when based on
a large number of annotations [Paun et al., 2018], in
which case relying on other sources of information
becomes unnecessary. For examples where all
annotations agree, an increase in the number of such
annotations will typically correspond to an increased
CROWDLAB consensus score. The Label Quality
Score alone fails to exhibit this desirable property.

Methods like Dawid-Skene estimate K x K confusion
matrices per annotator, which may be statistically
challenging when some annotators provide few labels
[Paun et al., 2018]. CROWDLAB merely estimates
a single likelihood parameter P shared across all
classes/annotators in (3) as well as a single per
annotator statistic w;. Both can be better estimated
from a limited number of observations.

Popular crowd-sourcing methods like Dawid-Skene
or GLAD are iterative algorithms, with high compu-
tational costs when their convergence is slow [Sinha
et al.,, 2018, Stephens, 2000], whereas CROWD-
LAB does not require iterative updates and is fully
deterministic (for a given classifier).

3 Experiments

Datasets. To evaluate various methods, we employ real-
world multi-annotator data with naturally occurring label
errors. We run three benchmarks based on different subsets
of the CIFAR-10H data [Peterson et al., 2019] which we call:
Hardest, Uniform, Complete (see Appendix A.1 for details
and Appendix B and C for additional results). CIFAR-10H
contains multiple labels for images in the CIFAR-10 test
set [Krizhevsky and Hinton, 2009], obtained from a large
set of new human annotators. As a source of ground truth
labels, we simply use the corresponding labels for each
image from the original CIFAR-10 dataset [Krizhevsky and
Hinton, 2009]. Northcutt et al. [2021a] found the original
CIFAR-10 labels to contain few errors in verification studies,

and they have been adopted as ground truth labels in other
research as well [Kuan and Mueller, 2022].

Models. To study how methods perform across different
types of classifiers with varying accuracy, we applied every
method twice, once using a ResNet-18 classifier [He et al.,
2016] and another time with a Swin Transformer model
[Liu et al., 2021]. Both classifiers are trained on the same
data (majority-vote consensus labels) in the same manner.
Here the Swin Transformer represents a high quality model,
whereas ResNet-18 represents a less accurate model (that is
still commonly used in practice).

Metrics. To measure each of our three previously stated
estimation tasks, we employ the following metrics:

1. To evaluate how well methods can estimate consensus
labels from multiply-annotated data, we measure the
accuracy of the inferred consensus label for each
example against its ground truth label.

2. To evaluate how well methods can estimate the quality
of each given consensus label, we compare estimated
quality score g; for each example against a binary
target indicating whether or not the consensus label
matches the ground truth label. If our goal is to use the
quality scores to flag those examples whose consensus
label is currently incorrect, this is a form of information
retrieval [Kuan and Mueller, 2022]. Thus our consen-
sus quality scores are evaluated via precision/recall
metrics: AUROC, AUPRC, and Lift at various cutoffs
(which is directly proportional to Precision@T'). To
focus our evaluation purely on the estimation of label
quality, throughout this section, we use each method
to estimate quality scores for a single set of consensus
labels established via majority vote. We always score
the same of consensus labels here because our above
evaluation already quantifies how good the consensus
labels are from different methods, and we do not want
this to confound our evaluation of how well different
methods can estimate label quality. While our rigorous
evaluation of label quality estimation here is applied
to majority-vote consensus labels, in practice, each
scoring method can be used to estimate the quality of
consensus labels derived via any other approach.

3. To evaluate how well methods can estimate the
quality of each annotator, we measure the Spearman
correlation between a; and ACC; over all annotators
Jj, where: a; denotes our estimated annotator quality
score (Sec. 2.2) and ACC; denotes the accuracy of
the j-th annotator’s chosen labels with respect to the
ground truth labels (considering only the subset of ex-
amples labeled by annotator j). A method that achieves
high Spearman correlation must produce annotator
quality scores that are lower for those annotators
whose labels tend to be wrong the most often.
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Note that all such metrics are for evaluation purposes only,
and would not be computable in real applications of our
methodology due to a lack of ground truth labels. For evalu-
ating consensus quality scores, AUROC measures how well
these scores are able to differentiate correct and incorrect
consensus labels. AUPRC accounts for the precision/recall
of the consensus quality scores in flagging an incorrect con-
sensus label, in a manner that is more sensitive to proportion
of errors in the majority-vote consensus label errors than
AUROC [Davis and Goadrich, 2006]. The Lift at 7" metric
measures how much more likely we are to encounter an
incorrect consensus label among the top 7" ranked examples
that have the worst consensus quality score.

4 Results

Figures 2, S1, S2, and Tables 1, S2, S3 demonstrate that
CROWDLAB overall performs the best across our evalua-
tions for consensus and annotator quality scores, and also
typically produces the most accurate consensus labels. For
most methods considered in this paper, all evaluation metrics
improve when used with the Swin Transformer vs. ResNet-
18 model. This illustrates how a better classifier can be
utilized to get more improvement in consensus labels and
consensus/annotator quality estimates. Effective methods
for multi-annotator analysis must remain compatible with
future innovations in classifier technology.

Considering only classifier predictions and consensus labels
(rather than individual annotator information), the Label
Quality Score also effectively estimates consensus quality
when we have an accurate model (Swin Transformer). Pre-
dictions from a strong classifier suffice to estimate label
quality without additional information provided by individ-
ual annotators [Kuan and Mueller, 2022]. However Label
Quality Score performs worse than other methods with a
lower accuracy classifier (ResNet-18). This demonstrates
the value of accounting for the individual annotations and
overall model accuracy in CROWDLAB, which performs
well relative to other methods regardless of the classifier’s
accuracy. Treating the classifier as an additional annotator
for the Dawid-Skene and GLAD methods improves their
performance, but not enough to match CROWDLAB, which
better accounts for the classifier’s confidence. While the
Empirical Bayes method also accounts for classifier confi-
dence to augment Dawid-Skene, it similarly unable to match
CROWDLAB, demonstrating why our method considers
how much to weigh the model based on its estimated trust-
worthiness relative to the annotators.

We also compare CROWDLAB against a variant of this
method which lacks the per-annotator quality estimation
(i.e. all annotator weights w; are equal), and find this vari-
ant underperforms as it estimates foo little information about
the annotators (results in Appendix E). On another Uniform
dataset in which there are 1-5 annotations for each example

occurring with equal frequencies, CROWDLAB is able to
produce better estimates for tasks (1)-(3) than other methods
(results in Appendix B). On another Complete dataset with
many more (~ 50) annotations per example, such that sim-
ple annotator agreement and majority vote produce highly
accurate estimates, CROWDLAB retains its strong perfor-
mance compared to other methods (results in Appendix C).
We also run all methods with an unrealistically accurate clas-
sifier on all datasets (results in Appendix D), a setting that
favors the Label Quality Score, and find that CROWDLAB
still outperforms the other methods. This breadth of settings
highlights the utility of CROWDLAB across a wide range
of applications involving mediocre/stellar classfier models
and datasets with varying numbers of collected annotations.

5 Discussion

Unlike other ways to utilize classifiers with crowdsourcing
algorithms, CROWDLAB considers a model’s estimated
confidence and how accurate it is relative to individual an-
notators. Methods such as Dawid-Skene with Model and
GLAD with Model take into account the model predictions
but fail to take into model confidence and accuracy, whereas
CROWDLAB carefully considers how good the classifier
model is relative to the annotators. Our proposed methodol-
ogy is compatible with any classifier and training strategy,
ensuring its out-of-the-box performance will improve as
new models and training tricks are invented.

Naturally, the efficacy of CROWDLAB depends on being
able to train a reasonably performant classifier, unlike gener-
ative models of annotator statistics like Dawid-Skene. For-
tunately, training good classifiers is easy nowadays with
AutoML [Erickson et al., 2020] and versatile techniques for
calibration, data augmentation, and transfer learning [Thu-
lasidasan et al., 2019]. Another limitation of our approach
is its marginal benefit in settings where every example is
labeled by a large number of annotators, in which simple
annotator agreement effectively measures quality (Appendix
C). Labeling budgets however prevent many applications
from benefitting from this law of large numbers.

Our research introduces practical and accurate estimates for
consensus labels and their quality as well as annotator qual-
ity; we expect their broader impact to be an improvement
in supervised learning and analytics with datasets labeled
by multiple annotators. As with most classification projects,
CROWDLAB users must remain wary of overconfident
model predictions with limited ability to generalize, which
may lead to overly optimistic estimates of quality. CROWD-
LAB is highly modular and future work can improve its
various components such as the: classifier and label quality
score L(+) utilized, or the estimation of annotator weights
and classifier vs. annotator accuracy. Extending the method-
ology to settings with possible collusion between annotators
may also be of interest [Song et al., 2021].
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Figure 2: Benchmarking multi-annotator methods on the Hardest dataset.

Model Method Lift @ 10 Lift @ 50 Lift @ 100 Lift @ 300 Lift @ 500
ResNet-18  Agreement 4.87 5.84 6.33 5.27 4.72
ResNet-18  Dawid-Skene 12.89 11.79 13.26 10.74 8.51
ResNet-18 GLAD 14.6 15.69 15.88 13.93 9.96
ResNet-18  Dawid-Skene with Model 12.54 11.47 8.6 5.56 5.09
ResNet-18 ~ GLAD with Model 14.67 13.69 14.43 11.25 10.81
ResNet-18  Empirical Bayes 12.17 12.17 11.68 11.11 10.27
ResNet-18  Active Label Cleaning 17.03 19.95 16.3 10.22 7.88
ResNet-18  Label Quality Score 19.46 2141 19.22 13.38 10.22
ResNet-18 CROWDLAB 24.33 22.38 17.76 14.27 11.82
Swin Agreement 2.51 6.03 6.28 4.86 4.17
Swin Dawid-Skene 12.89 14.36 14.55 10.99 8.66
Swin GLAD 14.6 15.69 15.88 14.11 10.04
Swin Dawid-Skene with Model 14.16 16.43 12.46 9.16 7.99
Swin GLAD with Model 8.7 17.39 17.1 15.36 11.71
Swin Empirical Bayes 12.56 9.55 11.06 11.81 11.76
Swin Active Label Cleaning 25.13 22.11 21.36 12.81 9.25
Swin Label Quality Score 25.13 22.61 21.86 16.92 12.81
Swin CROWDLAB 25.13 24.62 20.85 17.76 13.82

Table 1: Evaluating the precision of various consensus quality scoring methods on the Hardest dataset. Lift@T is
directly proportional to Precision@7T', and reports what fraction of the top-7" ranked consensus labels are actually incorrect
normalized by the fraction of incorrect consensus labels expected for a random set of examples.
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Appendix: Utilizing supervised models to infer consensus labels
and their quality from data with multiple annotators

A Experiment Details

Our experiments employ two of the most currently popular architectures for image classification, which are intended to
be representative of different types of models one might use in practice. Training of the Swin Transformer and ResNet
classifiers was done as by Kuan and Mueller [2022], using 5-fold cross-validation starting with ImageNet-pretrained weights
fine-tuned in each fold via AutoML [Erickson et al., 2020]. We do not evaluate annotator quality scores from the Active
Label Cleaning method because rating annotators was left as future work in the paper of Bernhardt et al. [2022]. Annotator
quality estimates from the Empirical Bayes approach match those from Dawid-Skene and are also omitted from our plots.

A.1 Datasets

The original CIFAR-10 dataset [Krizhevsky and Hinton, 2009] is fairly easy to label [Northcutt et al., 2021a], and the
annotator agreement on the complete CIFAR-10H data [Peterson et al., 2019] is unrealistically high for a representative
benchmark. This is because the images are not only relatively easy to label but there are also a large number of annotators
(~ 50) per image in CIFAR-10H (it is uncommon to have so many annotators per example in practice). Hence, our primary
benchmark uses a subset of the CIFAR-10H annotator labels. This subset starts with the 25 worst annotators and then
incrementally add annotators from worst to best (based on their accuracy vs. ground-truth labels) until each of the 10,000
examples have at least 1 annotation (resulting in a dataset with 511 annotators in total). During this process, we restricted
the selection of each new annotator to add to the current subset to only those which labeled at least one example also labeled
by one of the annotators in the current subset. We call this variation of CIFAR-10H the Hardest dataset benchmarked in this
paper, and believe it is more representative of real-world data labeling applications, where the proportion of label errors
tends to be far higher than in CIFAR-10H and the number of annotators far lower [Hivemind and Cloudfactory].

To ensure the robustness of our conclusions, we also evaluated all methods on two other datasets: a Uniform subset of
CIFAR-10H (only considering some randomly chosen annotators such that each example has between 1-5 annotations with
an equal number of examples receiving 1 annotation, 2 annotations, etc.), and the complete CIFAR-10H dataset (with all
annotator labels, which is far more than typically collected in most applications). Results for these other datasets are in
Appendix B and C, and are based on separate classifier models trained for each dataset. In all cases, we only consider
images from the fest set of CIFAR-10 (here treated as multiply-labeled training data), since these are the only images labeled
by many annotators in CIFAR-10H.

Labels predicted by Accuracy (w.r.t. ground truth labels)
ResNet-18 0.879
Swin Transformer 0.940
Swin Transformer trained with true labels 0.948
Annotator (Average) 0.909

Table S1: Classification accuracy for the Hardest dataset achieved by various predictors: ResNet-18 and Swin Transformer
classifiers trained on majority-vote consensus labels (i.e. the models used in the benchmark results of Figure 2), Swin
Transformer trained on true labels, which represents an unrealistically good classifier (see Appendix D), as well as the
average annotator in the dataset.
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B Results for Uniform Dataset

To evaluate our methods in another setting, we construct a different subset of CIFAR10-H and re-run our benchmark on
this new dataset. In this Uniform dataset, each example now has between 1 to 5 labels, where the number of labels per
example are uniformly distributed. This dataset contains 421 annotators and 10,000 examples. Here the annotators are just
randomly selected from the CIFAR10-H pool, and are thus higher quality than in the Hardest dataset. The following results
demonstrate that CROWDLAB is also the best method overall for this Uniform dataset.
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Figure S1: Benchmarking multi-annotator methods on the Uniform dataset.
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Model Quality Method Lift @ 10 Lift @ 50 Lift @ 100 Lift @ 300 Lift @ 500
ResNet-18  Agreement 21.19 11.86 9.75 9.04 7.12
ResNet-18  Dawid-Skene 31.69 24.65 19.01 12.09 8.52
ResNet-18  GLAD 31.69 22.54 25.7 13.03 9.23
ResNet-18  Dawid-Skene with Model 10.34 11.37 7.24 543 4.86
ResNet-18  GLAD with Model 17.54 18.42 15.79 13.01 12.72
ResNet-18  Empirical Bayes 12.71 20.34 18.22 13.98 11.44
ResNet-18  Active Label Cleaning 339 24.58 16.1 10.03 7.88
ResNet-18  Label Quality Score 33.9 26.27 22.46 12.43 9.75
ResNet-18 CROWDLAB 42.37 33.05 27.97 16.95 13.81
Swin Agreement 8.89 8.0 7.56 7.85 6.49
Swin Dawid-Skene 28.17 27.46 20.07 11.74 8.45
Swin GLAD 35.21 25.35 27.11 13.03 9.23
Swin Dawid-Skene with Model 33.33 16.3 12.22 8.89 8.15
Swin GLAD with Model 23.47 23.47 23.0 19.87 14.74
Swin Empirical Bayes 13.33 17.78 17.78 14.96 12.44
Swin Active Label Cleaning 44.44 30.22 24.0 14.07 10.13
Swin Label Quality Score 35.56 32.89 29.33 18.67 13.6
Swin CROWDLAB 40.0 35.56 32.0 21.19 15.2

Table S2: Evaluating the precision of various consensus quality scoring methods on the Uniform dataset. Lift@T is
directly proportional to Precision@7T', and reports what fraction of the top-7" ranked consensus labels are actually incorrect
normalized by the fraction of incorrect consensus labels expected for a random set of examples.
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C Results for Complete Dataset

We also evaluate our methods on the full original CIFAR-10H dataset [Peterson et al., 2019]. This Complete dataset contains

2571 annotators where each annotator labels 200 examples,

such that each of the 10,000 images has approximately 50

annotations. The Complete dataset has by far the highest number of annotations per example, and more than are available in
most real-world multi-annotator datasets. With so many annotations per example, basic annotator agreement methods are
highly effective. CROWDLAB works similarly well, highlighting its adaptive nature.
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Figure S2: Benchmarking multi-annotator methods on the Complete dataset.
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Model Quality Method Lift @ 10 Lift @ 50 Lift @ 100 Lift @ 300 Lift @ 500
ResNet-18  Agreement 25.97 33.77 44.16 26.41 17.92
ResNet-18  Dawid-Skene 274 41.1 39.73 25.57 17.81
ResNet-18  GLAD 89.74 66.67 47.44 18.38 11.03
ResNet-18  Dawid-Skene with Model 28.17 36.62 38.03 26.29 17.75
ResNet-18  GLAD with Model 53.33 61.33 46.67 17.78 10.67
ResNet-18  Empirical Bayes 77.92 49.35 44.16 26.84 18.18
ResNet-18  Active Label Cleaning 0.0 10.39 12.99 8.66 8.83
ResNet-18  Label Quality Score 38.96 20.78 19.48 13.42 9.09
ResNet-18 CROWDLAB 38.96 49.35 44.16 27.71 18.44
Swin Agreement 26.32 34.21 43.42 26.32 17.89
Swin Dawid-Skene 41.1 41.1 39.73 25.57 17.81
Swin GLAD 89.74 66.67 47.44 18.38 11.03
Swin Dawid-Skene with Model 14.93 38.81 37.31 25.87 17.61
Swin GLAD with Model 28.17 53.52 46.48 17.37 10.42
Swin Empirical Bayes 78.95 50.0 42.11 26.32 17.89
Swin Active Label Cleaning 0.0 0.0 5.26 7.46 6.84
Swin Label Quality Score 26.32 21.05 21.05 17.11 13.68
Swin CROWDLAB 65.79 65.79 48.68 28.07 18.68

Table S3: Evaluating the precision of various consensus quality scoring methods on the Complete dataset. Lift@7T is
directly proportional to Precision@7T', and reports what fraction of the top-7" ranked consensus labels are actually incorrect
normalized by the fraction of incorrect consensus labels expected for a random set of examples.
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D Model Trained on True CIFAR-10 Labels

In this section, we investigate how the methods perform when utilizing a highly accurate model. We obtain such a model by
training a Swin Transformer on the ground truth labels rather than consenus labels estimated from the given annotations
(this would not be possible in real applications). All benchmark results presented in this section are with respect to this
unrealistically good classifier.

AUPRC for Consensus Quality Score

AUROC for Consensus Quality Score

Agreement

Agreement

Dawid-Skene Dawid-Skene

GLAD GLAD

Dawid-Skene with Model Dawid-Skene with Model

GLAD with Model GLAD with Model

Empirical Bayes Empirical Bayes

Active Label Cleaning Active Label Cleaning

Label Quality Score Label Quality Score

CROWDLAB CROWDLAB

065 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Spearman Correlation for Annotator Quality Consensus Label Accuracy

Agreement Majority Vote (Agreement)

Dawid-Skene
Dawid-Skene

GLAD
GLAD
Dawid-Skene with Model
Dawid-Skene with Model
GLAD with Model

Label Quality Score GLAD with Model

CROWDLAB CROWDLAB

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.92 093 094 095 0.96 0.97 0.98 0.99 1.00

I Hardest I Uniform I Complete

Figure S3: Benchmark results using unrealistically good classifier fit to true labels for each dataset.

Quality Method Lift @ 10 Lift @ 50 Lift @ 100 Lift @ 300 Lift @ 500
Agreement 2.65 3.18 3.98 4.16 3.77
Dawid-Skene 14.73 15.47 15.1 11.48 8.95
GLAD 14.6 15.69 16.24 14.6 10.07
Dawid-Skene with Model 24.02 18.62 15.02 10.11 9.13
GLAD with Model 19.11 21.66 20.06 16.45 11.97
Empirical Bayes 5.31 7.43 10.34 12.73 12.84
Active Label Cleaning 23.87 25.46 252 16.18 11.03
Label Quality Score 23.87 24.93 24.93 20.07 14.64
CROWDLAB 26.53 25.99 24.14 19.19 14.8

Table S4: Evaluating the lift (i.e. precision) of various consensus quality scoring methods on the Hardest dataset, here
employing our unrealistically good classifier trained with true labels.
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Quality Method Lift @ 10 Lift @ 50 Lift @ 100 Lift @ 300 Lift @ 500
Agreement 8.93 10.71 8.48 7.44 6.34
Dawid-Skene 28.17 25.35 20.42 12.21 8.73
GLAD 31.69 24.65 27.82 13.03 9.23
Dawid-Skene with Model 31.01 19.38 14.73 9.95 9.69
GLAD with Model 13.95 25.12 23.72 20.78 15.44
Empirical Bayes 13.39 19.64 20.98 19.05 14.38
Active Label Cleaning 40.18 39.29 32.14 17.11 11.34
Label Quality Score 40.18 40.18 36.16 19.79 14.38
CROWDLAB 44.64 33.04 34.38 22.32 15.98

Table S5: Evaluating the lift (i.e. precision) of various consensus quality scoring methods on the Uniform dataset, here
employing our unrealistically good classifier trained with true labels.

Quality Method Lift @ 10 Lift @ 50 Lift @ 100 Lift @ 300 Lift @ 500
Agreement 25.64 359 43.59 26.5 17.95
Dawid-Skene 274 38.36 39.73 25.57 17.81
GLAD 89.74 66.67 47.44 18.38 11.28
Dawid-Skene with Model 42.86 40.0 38.57 26.67 17.71
GLAD with Model 40.54 54.05 45.95 17.12 10.54
Empirical Bayes 89.74 48.72 44.87 26.92 18.21
Active Label Cleaning 38.46 23.08 19.23 14.53 11.54
Label Quality Score 64.1 51.28 38.46 18.38 12.56
CROWDLAB 89.74 61.54 42.31 26.92 18.46

Table S6: Evaluating the lift (i.e. precision) of various consensus quality scoring methods on the Complete dataset, here
employing our unrealistically good classifier trained with true labels.
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E Variant of our Method Without Per Annotator Weights

Here we present results for a simpler variant of CROWDLAB that we also explored, henceforth called No Perannotator
Weights. The two approaches are overall the same, except while CROWDLAB considers each annotator individually and
assigns them a separate weight w;, No Perannotator Weights aggregates all the annotators and treats them as one “average
annotator” to be weighed against the classifier model. Details of the No Perannotator Weights approach are presented below.

E.1 Consensus Quality Method

Just as in CROWDLAB, we estimate the quality of consensus labels via the label quality score based on estimated class
probabilities. In the No Perannotator Weights variant, these probabilities are computed via a slightly different weighted
average:

wpm - Pm(Yi | Xi) +wa-palyi [ {Yi;})

pew (Vi | Xi, {Yis}) =
PNPW( | { J}) Wt + wa

(20)

1
where wag = w- — Z VI|Til, wa = (1 —w)-+/|J;| are one weight for the model and one weight applied to all annotators.
n &

7
Both depend on w, whose definition follows a similar strategy as used in CROWDLAB for individual annotators, but here
applied to their aggregate output.

First let’s recall these quantities from Sec. 2.1: s; represents annotator j’s agreement with other annotators who labeled the
same examples and is defined in (4), A; represents the accuracy of each annotator’s labels with respect to the majority-vote
consensus label for examples with more than one annotation and is defined in (16). In this variant, we compute an average
annotator accuracy A by taking the average of each annotator’s accuracy weighted simply by the number of examples each
annotator labeled (rather than their estimated trustworthiness).

25 A5 - T
Zj |Ij|
Let A represent the accuracy of the model with respect to the majority-vote consensus labels among examples with more

than one annotation, as defined in (5). We then choose our weight w = A /(A + A) to balance model accuracy vs. that
of the average annotator.

A=

While CROWDLAB uses a separate class likelihood vector for each annotator, this variant only considers their aggregate
class likelihood

1 S when Y;: = k
paYi =k [{Yy}) = ), P; where P; = {13_57 ’
|7l ];7 71 WhenYi; #k

E.2 Annotator Quality Method
In the No Perannotator Weights variant, we score the quality of each annotator via:

a; =w-Q; + (1 —w)- A,

Here @); the average label quality score of labels given by each annotator, computed via (15) as in CROWDLAB, but here
based on class probabilities pxpw estimated using No Perannotator Weights defined in (20) in place of pcg. A; and w are
defined as above in Sec. E.1.

E.3 Benchmarking CROWDLAB with/without per annotator weights

Ignoring the strengths and weakness of each individual annotator when aggregating them is overall detrimental to CROWD-
LAB. However the performance reduction due to this modification is surprisingly small, given how important accounting
for annotators’ relative quality is stated to be in the crowdsourcing literature [Hovy et al., 2013, Karger et al., 2011, Kara
et al., 2015, Dawid and Skene, 1979, Whitehill et al., 2009]. Rather the key aspects behind the success of CROWDLAB
are its careful consideration of: how much to trust the classifier model vs. the aggregate annotations along with how many
annotations were provided for each example. Studying additional variants of CROWDLAB with either of these two pieces
removed produced very poor results in our benchmarks.
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Figure S4: Benchmarking CROWDLAB with/without per annotator weights on the Hardest dataset.

Model Quality Method Lift @ 10 Lift @ 50 Lift @ 100 Lift @ 300 Lift @ 500
ResNet-18  No Perannotator Weights 24.33 21.9 18.25 13.95 11.92
ResNet-18 CROWDLAB 24.33 22.38 17.76 14.27 11.82
Swin No Perannotator Weights 25.13 23.62 20.85 17.84 14.02
Swin CROWDLAB 25.13 24.62 20.85 17.76 13.82

Table S7: Evaluating the precision of CROWDLAB consensus quality scores with/without per annotator weights on the
Hardest dataset. Lift@7T is directly proportional to Precision@7’, and reports what fraction of the top-7" ranked consensus
labels are actually incorrect normalized by the fraction of incorrect consensus labels expected for a random set of examples.
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